Can we prove that $\lim_{x \to 0} \frac{x - \sin x}{x^3} = \frac 16$ using just algebra, trigonometric theorems and notable limits $\left( \mathrm{i.e. }\quad \frac{\sin x}{x} \to 1 \quad \mathrm{and} \quad \frac{1 - \cos x}{x^2} \to \frac 12 \right) $ and no l'Hospital rule, no series expansion, no Taylor series?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment