By using the definition of a limit only, prove that
$\lim_{x\rightarrow 0} \dfrac{1}{3x+1} = 1$
We need to find $$0<\left|x\right|<\delta\quad\implies\quad\left|\dfrac{1}{3x+1}-1\right|<\epsilon.$$
I have simplified $\left|\dfrac{1}{3x+1}-1\right|$ down to $\left|\dfrac{-3x}{3x+1}\right|$
Then since ${x\rightarrow 0}$ we can assume $-1
Answer
If we focus on $-1 Rather than focusing on $-1 < x < 1$, focus on a smaller interval, for example $|x| < \frac14$. Hence $\delta < \frac14$. if $-\frac14 < x < \frac14$, $$-\frac34+1 < 3x+1< \frac34+1$$. $$\frac14 < 3x+1< \frac74$$ $$\left|\frac{1}{3x+4} \right| < 4$$ Hence $$12\delta < \epsilon$$
No comments:
Post a Comment