Sunday, 30 June 2013

calculus - By using the definition of limit only, prove that $lim_{xrightarrow 0} frac1{3x+1} = 1$




By using the definition of a limit only, prove that




$\lim_{x\rightarrow 0} \dfrac{1}{3x+1} = 1$




We need to find $$0<\left|x\right|<\delta\quad\implies\quad\left|\dfrac{1}{3x+1}-1\right|<\epsilon.$$
I have simplified $\left|\dfrac{1}{3x+1}-1\right|$ down to $\left|\dfrac{-3x}{3x+1}\right|$



Then since ${x\rightarrow 0}$ we can assume $-1No sure if the solution is correct


Answer



If we focus on $-1


Rather than focusing on $-1 < x < 1$, focus on a smaller interval, for example $|x| < \frac14$. Hence $\delta < \frac14$.



if $-\frac14 < x < \frac14$, $$-\frac34+1 < 3x+1< \frac34+1$$.



$$\frac14 < 3x+1< \frac74$$



$$\left|\frac{1}{3x+4} \right| < 4$$



Hence $$12\delta < \epsilon$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...