Saturday, 22 June 2013

calculus - Integrate intzsqrt9z2dz by trigonometric subsitution



I want to integrate z9z2 by trigonometric subsitution. Here's what I did:




let z=3sinθdz=3cosθdθ



z9z2dz=3sinθ932sin2θ  3cosθ  dθ=9sinθcosθ9(1sin2θ)  dθ=9sinθcosθ 3|cosθ|dθ=27sinθcos2θ dθ
let u=cosθdu=sinθdθ



27sinθcos2θ dθ=27u2 du=27u33=27cos3θ3
Since z=3sinθ then z2=9sin2θz2=9(1cos2θ)z2=99cos2θ9cos2θ=9z2cos2θ=9z29



But how to find cos3(θ) in terms of z?




ps: I know this integral is a lot easier to integrate with simple substitution.


Answer



I=z9z2dz
Let z=3sinθ:
I=3sinθ.3cosθ3cosθ.dθ=27cos2θsinθdθ=27cos2θd(cosθ)=27cos3θ3=9(1(z/3)2)3/2+c
Because sin2θ+cos2θ=1cosθ=1sin2θ=(1(z/3)2)1/2
Hope you can cube it now?


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...