I want to integrate ∫z√9−z2 by trigonometric subsitution. Here's what I did:
let z=3sinθ⟹dz=3cosθdθ
∫z√9−z2dz=∫3sinθ√9−32sin2θ 3cosθ dθ=9∫sinθcosθ√9(1−sin2θ) dθ=9∫sinθcosθ 3|cosθ|dθ=27∫sinθcos2θ dθ
let u=cosθ⟹du=sinθdθ
27∫sinθcos2θ dθ=−27∫u2 du=−27u33=−27cos3θ3
Since z=3sinθ then z2=9sin2θ⟹z2=9(1−cos2θ)⟹z2=9−9cos2θ⟹9cos2θ=9−z2⟹cos2θ=9−z29
But how to find cos3(θ) in terms of z?
ps: I know this integral is a lot easier to integrate with simple substitution.
Answer
I=∫z√9−z2dz
Let z=3sinθ:
I=∫3sinθ.3cosθ3cosθ.dθ=27∫cos2θsinθdθ=−27∫cos2θd(cosθ)=−27cos3θ3=−9(1−(z/3)2)3/2+c
Because sin2θ+cos2θ=1⟹cosθ=√1−sin2θ=(1−(z/3)2)1/2
Hope you can cube it now?
No comments:
Post a Comment