Thursday 20 June 2013

divisibility - Prime Numbers. Show that if $a mid 42n + 37$ and $a mid 7n +4$, for some integer $n$, then $a = 1$ or $a = 13$



Show that if $a \mid 42n + 37$ and $a \mid 7n +4$, for some integer $n$, then $a = 1$ or $a = 13$




I know most of the rules of divisibility and that any integer number can be expressed as the product of primes.



Given $a = \prod_{i=1}^\infty p_i^{\alpha_i}$ and $b = \prod_{i=1}^\infty p_i^{\beta_i}$



$a \mid b$ if and only of $\alpha_i \le \beta_i$ for every $i = 1, 2, 3, \ldots$



Even though i have this information, I cannot prove the statement. Help me please.


Answer



Hint $\bmod a\!:\,\ \color{#0a0}{ 37} \equiv -42n \equiv \overbrace{6(\color{#c00}{-7n}) \equiv (\color{#c00}{4})6}^{\Large \color{#c00}{-7n\ \ \equiv\ \ 4}} \equiv \color{#0a0}{24}\ \Rightarrow\ a\mid 13 = \color{#0a0}{37-24}$




Remark $\ $ If you are familiar with modular fractions then it can be written as



$\quad\ \ \ \ \bmod a\!:\ \ \dfrac{37}{42}\equiv -n \equiv \dfrac{4}{7}\equiv \dfrac{24}{42}\,\Rightarrow\, 37\equiv 24\,\Rightarrow\, 13\equiv 0$



Update $\ $ A downvote occurred. Here is a guess why. I didn't mention why those fractions exist. We prove $\,(7,a)=1$ so $\,7^{-1}\bmod n\,$ exists. If $\,d\mid 7,a\,$ then $\,d\mid a\mid 7n\!+\!4\,\Rightarrow\,d\mid 4\,$ so $\,d\mid (7,4)=1.\,$ Similarly $\,(42,a)=1\,$ by $\,(42,37)=1$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...