Let m and n be positive integers such that m>n. If the last 3 digits of 2012m and 2012n are identical, find the smallest possible value of m+n.
Since the 100's digit is 0 in both cases, I just did 2012^m \equiv 2012^n \mod 1000, and got 12^m \equiv 12^n\mod 1000 but I'm not sure where to go from there. Trying to compute the first few powers of 12 will only get the numbers larger and the pattern doesn't seem to emerge that soon.
Answer
Let find periodicity of last digit:
1\underline{2}, 14\underline{4}, 172\underline{8}, 2073\underline{6}, 24883\underline{2}, ...
Since 12^1 \equiv 12^5 \equiv 2 \bmod(10), we conclude that 12^k\equiv 12^{k+4} (\bmod 10).
Now find periodicity of last 2 digits, using this 4-periodicity of last digit:
since 12^4 \equiv 36 (\bmod 100),
12^1 =12 (\bmod 100),
12^5 \equiv 12 \cdot 12^4 \equiv 12\cdot 36 \equiv 32 (\bmod 100),
12^9 \equiv 12^5 \cdot 12^4 \equiv 32\cdot 36 \equiv 52 (\bmod 100),
12^{13} \equiv 12^9 \cdot 12^4 \equiv 52\cdot 36 \equiv 72 (\bmod 100),
12^{17} \equiv 12^{13}\cdot 12^4 \equiv 72\cdot 36 \equiv 92 (\bmod 100),
12^{21} \equiv 92\cdot 36 \equiv 12 (\bmod 100);
so, periodicity of last 2 digits is 20.
Finally, find periodicity of last 3 digits:
since 12^{20} \equiv 176 (\bmod 1000), we have:
12^2 \equiv 144 (\bmod 1000);
12^{22} \equiv 144 \cdot 176 \equiv 344 (\bmod 1000);
12^{42} \equiv 344 \cdot 176 \equiv 544 (\bmod 1000);
12^{62} \equiv 544 \cdot 176 \equiv 744 (\bmod 1000);
12^{82} \equiv 744 \cdot 176 \equiv 944 (\bmod 1000);
12^{102} \equiv 944 \cdot 176 \equiv 144 (\bmod 1000);
So, 12^2 = 144,
12^{102} \equiv 144 (\bmod 1000).
(m+n = 104)
No comments:
Post a Comment