Consider the infinite geometric progression $a_1, a_2, a_3, \dots$. Given the sum of its terms, as well as the sum of the terms' cubes
$a_1 + a_2 + a_3 + \cdots = 3\\
a_1^3 + a_2^3 + a_3^3 + \cdots = \frac{108}{13}$
find the sum of the terms' squares
$a_1^2 + a_2^2 + a_3^2 + \cdots$
This is what I have so far:
$a_1 + a_2 + a_3 + \cdots = 3\\
\Longrightarrow 1 + q + q^2 + \cdots = \frac{3}{a_1}$
$a_1^3 + a_2^3 + a_3^3 + \cdots = \frac{108}{13}\\
\Longrightarrow 1 + q^3 + q^6 + \cdots = \frac{108}{13a_1}$
$a_1^2 + a_2^2 + a_3^2 + \cdots\\
= \frac{a_1^3}{a_1} + \frac{a_2^3}{a_2} + \frac{a_3^3}{a_3} + \cdots\\
= \frac{a_1^3}{a_1} \left(1 + \frac{q^3}{q} + \frac{q^6}{q^2} + \cdots\right)$
Any help will be much appreciated.
Answer
HINT:
Let the first term be $a$ and the common ratio be $r$
For convergence we need $|r|<1$
So, the sum of the first series $\sum_{0\le n<\infty}a\cdot r^n=\frac a{1-r}=3\ \ \ \ (1)$
So, the sum of the second series $\sum_{0\le n<\infty}a^3\cdot (r^3)^n=\frac {a^3}{1-r^3}=\frac{108}{13}\ \ \ \ (2) $
Cube the first & divide by $(2)$ to get $r$ and then get $a$ from $(1)$
We need $$\sum_{0\le n<\infty}a^2\cdot (r^2)^n=\frac{a^2}{1-r^2}$$
No comments:
Post a Comment