Saturday, 15 June 2013

Evaluate intinftyinftyfracdx1+x2 using complex integration




I'm trying to evaluate the real integral dx1+x2



Denote Γ1=[R,R] Γ2=Reit, for t[0,π],
and let γ be a small circle around i so γ is inside
the area bounded by Γ1Γ2. By Cauchy's theorem:
Γ1f(z)dz+Γ2f(z)dz=γf(z)dz


And calculating γf(z)dz gives us π

(operating Cauchy's formula on the function 1z+i). so
we got
Γ1f(z)dz+Γ2f(z)dz=π

now I need to show that
limRΓ2f(z)dz=0

and I'm stuck.


Answer



You can apply Estimation lemma. Since
|Γ211+z2dz|πRR21


for large R,
limR|Γ211+z2dz|=0.

Then you can get what you want.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...