Let 1≤m≤n be positive integers. I will appreciate any help proving the following identity
\sum_{k=n}^{n+m}(-1)^k\binom{k-1}{n-1}\binom{n}{k-m}=0
Thanks!
Answer
Here we have Chu-Vandermonde's Identity in disguise.
We obtain for 1\leq m\leq n
\begin{align*} \color{blue}{\sum_{k=n}^{n+m}}&\color{blue}{(-1)^k\binom{k-1}{n-1}\binom{n}{k-m}}\\ &=\sum_{k=0}^m(-1)^{k+n}\binom{n+k-1}{n-1}\binom{n}{k+n-m}\tag{1}\\ &=\sum_{k=0}^m(-1)^{k+n}\binom{n+k-1}{k}\binom{n}{m-k}\tag{2}\\ &=(-1)^n\sum_{k=0}^m\binom{-n}{k}\binom{n}{m-k}\tag{3}\\ &=(-1)^n\binom{0}{m}\tag{4}\\ &\,\,\color{blue}{=0} \end{align*}
Comment:
In (1) we shift the index to start with k=0.
In (2) we apply the binomial identity \binom{p}{q}=\binom{p}{p-q} twice.
In (3) we apply the binomial identity \binom{-p}{q}=\binom{p+q-1}{q}(-1)^q.
In (4) we finally apply the Chu-Vandermonde identity.
No comments:
Post a Comment