Monday, 9 September 2013

calculus - Showing $sum_{n=1}^infty sin x sin nx$ is uniformly bounded



I need to show that for every $x$: $$\sum_{n=1}^\infty \sin x \sin nx \lt M$$




So the first thing came into my mind is applying a well-known trigonometric identity:



$$\sum_{n=1}^\infty \sin x \sin nx = \frac{1}{2} \sum_{n=1}^\infty \cos (x-nx) - \cos(x+nx)$$



For a second I thought I'd get a telescoping series but it isn't.



What should I do next?



EDIT
Basically I'm trying to use here Dirichlet's test to show uniform converges for the functions series:




$$f_n(x) = \sum_{n=1}^\infty \frac{\sin x \sin nx}{\sqrt {n+x^2}}$$


Answer



Since $\cos$ is an even function, you have in fact a telescoping series:



\begin{align}
\sum_{n = 1}^N \sin x\sin (nx) &= \frac{1}{2}\sum_{n = 1}^N \bigl(\cos\bigl((n-1)x\bigr) - \cos \bigl((n+1)x\bigr)\bigr)\\
&= \frac{1}{2}\bigl( 1 + \cos x - \cos (Nx) - \cos \bigl((N+1)x\bigr)\bigr).
\end{align}


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...