Friday 28 February 2014

abstract algebra - Finding an isomorphism between these two finite fields

Let $\alpha$ be a root of $x^3 + x + 1 \in \mathbb{Z}_2[x]$ and $\beta$ a root of $x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$. Then we know that $$\mathbb{Z}_2(\alpha) \simeq \frac{\mathbb{Z}_2[x]}{(x^3 + x + 1)} \simeq \mathbb{F}_8 \simeq \frac{\mathbb{Z}_2[x]}{(x^3 + x^2 + 1)} \simeq \mathbb{Z}_2(\beta). $$




I need to find an explicit isomorphism $\mathbb{Z}_2(\alpha) \to \mathbb{Z}_2(\beta). $



I was thinking of finding a basis for $\mathbb{Z}_2(\alpha)$ and $\mathbb{Z}_2(\beta)$ over $\mathbb{Z}_2$.



I let $\left\{1, \alpha, \alpha^2\right\}$ and $\left\{1, \beta, \beta^2\right\}$ be these two bases. Now suppose I have a field morphism $$ \phi: \mathbb{Z}_2(\alpha) \to \mathbb{Z}_2(\beta) $$ which maps $1$ to $1$. how can I show that the image of $\alpha$, i.e. $\phi(\alpha)$, completely determines this map?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...