Thursday, 27 February 2014

elementary number theory - Divisibility rule for 43




Let $a_ka_{k-1}\dots a_1a_0$ the decimal expression of number ${n}$. Prove $n$ is divisible by 43 if and only if $a_ka_{k-1}\dots a_1-30a_0$ is divisible by 43.






Proof:



Let $\boldsymbol{x=a_ka_{k-1}\dots a_1}$ and $\boldsymbol{m=x-30a_0}$ then:



\begin{split}
43|n =43 \,|\, 10x+a_0 \Leftrightarrow & 10x&+&a_0 &\equiv 0\ ( \textrm{mod 43)} \\

\Leftrightarrow & 50x&+&5a_0 &\equiv0 \ (\text{mod 43)} \\
\Leftrightarrow & 7x&+&5a_0 &\equiv0 \ (\text{mod 43)} \\
\Leftrightarrow & 42x&+&30a_0 &\equiv0 \ (\text{mod 43)} \\
\Leftrightarrow & x &-& 30a_0& \equiv0 \ (\text{mod 43)} \Leftrightarrow 43 |x-30a_0 \Leftrightarrow 43|m
\end{split}






Is correct my proof ? Is there a better proof?


Answer




You're proof is perfectly fine. Maybe faster way to prove it to multiply everything by $13$ in the first step. So you have:



$$10x + a_0 \equiv 0 \pmod{43} \iff 130x + 13a_0 \equiv 0 \pmod{43} \iff x - 30a_0 \equiv 0 \pmod{43}$$



If you wonder how we came up with $13$ note that $10 \cdot 13 \equiv 1 \pmod {43}$, so $13$ is the multiplicative inverse of $10$ modulo $43$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...