Thursday, 27 February 2014

elementary number theory - Divisibility rule for 43




Let akak1a1a0 the decimal expression of number n. Prove n is divisible by 43 if and only if akak1a130a0 is divisible by 43.






Proof:



Let \boldsymbol{x=a_ka_{k-1}\dots a_1} and \boldsymbol{m=x-30a_0} then:



\begin{split} 43|n =43 \,|\, 10x+a_0 \Leftrightarrow & 10x&+&a_0 &\equiv 0\ ( \textrm{mod 43)} \\ \Leftrightarrow & 50x&+&5a_0 &\equiv0 \ (\text{mod 43)} \\ \Leftrightarrow & 7x&+&5a_0 &\equiv0 \ (\text{mod 43)} \\ \Leftrightarrow & 42x&+&30a_0 &\equiv0 \ (\text{mod 43)} \\ \Leftrightarrow & x &-& 30a_0& \equiv0 \ (\text{mod 43)} \Leftrightarrow 43 |x-30a_0 \Leftrightarrow 43|m \end{split}






Is correct my proof ? Is there a better proof?


Answer




You're proof is perfectly fine. Maybe faster way to prove it to multiply everything by 13 in the first step. So you have:



10x + a_0 \equiv 0 \pmod{43} \iff 130x + 13a_0 \equiv 0 \pmod{43} \iff x - 30a_0 \equiv 0 \pmod{43}



If you wonder how we came up with 13 note that 10 \cdot 13 \equiv 1 \pmod {43}, so 13 is the multiplicative inverse of 10 modulo 43


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...