Sunday, 16 February 2014

calculus - Not sure how to evaluate $lim_{xto 0}frac{sin6x}{sin2x}$ (without l'Hospital)




$$\lim_{x\to 0}\frac{\sin(6x)}{\sin(2x)}$$



I know I can use L'Hospital's but I want to understand this particular explanation. They seem to skip something, and I'm not seeing the connection:




The limit is $\frac{6}{2}=3$ since $\lim_{x\to 0}\frac{\sin(x)}{x}=1$


Answer



For $x \neq 0$ and $x$ close to zero, we have



$$\frac{\sin 6x}{\sin 2x} = \frac{\sin 6x}{6x} \cdot \frac{6x}{\sin 2x} = 3 \cdot \frac{\sin 6x}{6x} \cdot \frac{2x}{\sin 2x}$$



See what to do now?


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...