Friday, 28 February 2014

probability - How to give rigorous proofs of these two limit statements?

Let $X$ be a random variable with cumulative distribution function $F(x)$. Then how to rigorously prove the following two limit statements?




  1. $\lim_{x \to - \infty} F(x) = 0$.


  2. $\lim_{x \to + \infty} F(x) = 1$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...