Monday, 17 February 2014

real analysis - For which values of $p$ does the serie $sumlimits_{n=2}^inftyfrac{1}{n^pln(n)}$ converge?

For which values of $p$ does the serie $\sum\limits_{n=2}^\infty\frac{1}{n^p\ln(p)}$ converge? I'm trying to use the ratio test but I can't get a simple term in which use limit easily enough.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...