Saturday, 22 February 2014

calculus - Dirichlet integral.




I want to prove $\displaystyle\int_0^{\infty} \frac{\sin x}x \,\mathrm{d}x = \frac \pi 2$, and $\displaystyle\int_0^{\infty} \frac{|\sin x|}x \,\mathrm{d}x \to \infty$.




And I found in wikipedia, but I don't know, can't understand. I didn't learn differential equation, laplace transform, and even inverse trigonometric functions.



So tell me easy, please.


Answer



About the second integral: Set $x_n = 2\pi n + \pi / 2$. Since $\sin(x_n) = 1$ and
$\sin$ is continuous in the vicinity of $x_n$, there exists $\epsilon, \delta > 0$ so that $\sin(x) \ge 1 - \epsilon$ for $|x-x_n| \le \delta$. Thus we have:
$$\int_0^{+\infty} \frac{|\sin x|}{x} dx \ge 2\delta\sum_{n = 0}^{+\infty} \frac{1 - \epsilon}{x_n} = \frac{2\delta(1-\epsilon)}{2\pi}\sum_{n=0}^{+\infty} \frac{1}{n + 1/4} \rightarrow \infty $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...