Could someone help me prove that given a finite measure space $(X, \mathcal{M}, \sigma)$ and a measurable function $f:X\to\mathbb{R}$ in $L^\infty$ and some $L^q$, $\displaystyle\lim_{p\to\infty}\|f\|_p=\|f\|_\infty$?
I don't know where to start.
Answer
Fix $\delta>0$ and let $S_\delta:=\{x,|f(x)|\geqslant \lVert f\rVert_\infty-\delta\}$ for $\delta<\lVert f\rVert_\infty$. We have
$$\lVert f\rVert_p\geqslant \left(\int_{S_\delta}(\lVert f\rVert_\infty-\delta)^pd\mu\right)^{1/p}=(\lVert f\rVert_\infty-\delta)\mu(S_\delta)^{1/p},$$
since $\mu(S_\delta)$ is finite and positive.
This gives
$$\liminf_{p\to +\infty}\lVert f\rVert_p\geqslant\lVert f\rVert_\infty.$$
As $|f(x)|\leqslant\lVert f\rVert_\infty$ for almost every $x$, we have for $p>q$, $$
\lVert f\rVert_p\leqslant\left(\int_X|f(x)|^{p-q}|f(x)|^qd\mu\right)^{1/p}\leqslant \lVert f\rVert_\infty^{\frac{p-q}p}\lVert f\rVert_q^{q/p},$$
giving the reverse inequality.
No comments:
Post a Comment