Friday, 28 February 2014

calculus - Prove: If limnrightarrowinfty|an|=0, then limnrightarrowinftyan=0




Using the squeeze theorem, prove the following:



If limn|an|=0, then \lim_{n\rightarrow\infty}a_n = 0.




Let f(x) = |a_n|. Let g(x) = a_n such that \forall x : g(x) \leq f(x). How do I continue this proof using the squeeze theorem? I want to construct a function h(x) that lies in between those two functions.



Answer



Hint : -|x|\le x\le |x|{}{}{}{}{}{}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...