Sunday, 16 February 2014

elementary set theory - How come $f^{-1}(Q cap R)$ = $f^{-1}(Q) cap f^{-1}(R)$ is true?

$f(S\cap T) \neq f(S) \cap f(T)$



but



$f^{-1}(Q \cap R)=f^{-1}(Q) \cap f^{-1}(R)$




Can you explain it in simple terms, so I understand why and develop the intuition to see if a statement is true or false just by looking at it?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...