Sunday, 16 February 2014

elementary set theory - Proof for Image of Indexed Collection of Sets?

Trying to prove that if f is one-to-one, then $$f\left(\bigcap\{U_\alpha:\alpha \in \Lambda\}\right)=\bigcap\{f(U_\alpha):\alpha\in\Lambda\}$$



I am able to prove that: $$f\left(\bigcap\{U_\alpha:\alpha \in \Lambda\}\right)\subseteq\bigcap\{f(U_\alpha):\alpha\in\Lambda\}$$



However, I do not really know where to begin the proof for:
$$\bigcap\{f(U_\alpha):\alpha\in\Lambda\}\subseteq f\left(\bigcap\{U_\alpha:\alpha \in \Lambda\}\right)$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...