There are examples of real valued functions which are continuous at irrationals and discontinuous at rationals. But i am trying to find such a monotone function. I don't know how to think this types of examples. I wants such types of simple examples not too much complicated so that each and everyone can easily digest it. I tried many simple examples but did't got. In the book Counterexamples in Analysis by Bernard R. Gelbaum and John Meigs Hubbell Olmsted there is given a way to construct such types to examples, but i like simplest such types of example. Please try to give such type of example. Thanks in advance.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment