Integrate ∫1(x+2)(x+3)dx
My Attempt:
∫1(x+2)(x+3)dx
∫1x+2dx.∫1x+3dx
log (x+2)1.log (x+3)1+C
log(x+2).log(x+3)+C
Is this correct? Or, How do I proceed the other way?
Answer
Method to do -
1(x+3)(x+2)=Ax+2+Bx+3
1=A(x+3)+B(x+2)
Case 1 -
When x+3=0
x=−3
Put x=−3
1=−B
B=−1
Case 2 -
When x+2=0
x=−2
Put x=−2
1=A
A=1
Now your integral becomes,
∫(1x+2−1x+3)dx
No comments:
Post a Comment