Wednesday, 9 April 2014

calculus - Integrate $int frac {1}{(x+2)(x+3)} textrm {dx}$



Integrate $\int \dfrac {1}{(x+2)(x+3)} \textrm {dx}$



My Attempt:
$$\int \dfrac {1}{(x+2)(x+3)} \textrm {dx}$$
$$\int \dfrac {1}{x+2} \textrm {dx} . \int \dfrac {1}{x+3} \textrm {dx}$$
$$\dfrac {\textrm {log (x+2)}}{1} . \dfrac {\textrm {log (x+3)}}{1} + C$$
$$\textrm {log} (x+2) . \textrm {log} (x+3) + C$$




Is this correct? Or, How do I proceed the other way?


Answer



Method to do -



$\frac{1}{(x+3)(x+2)} =\frac{A}{x+2}+\frac{B}{x+3}$



$1 = A(x+3)+B(x+2)$



Case 1 -




When $x+3=0$



$x=-3$



Put $x=-3$



$1 = -B$



$B = -1$




Case 2 -



When $x+2=0$



$x=-2$



Put $x=-2$



$1 = A$




$A = 1$



Now your integral becomes,



$\int (\frac{1}{x+2}-\frac{1}{x+3})\,dx$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...