Tuesday, 8 April 2014

calculus - Trigonometry Identity (Proof): $ sin^4theta +cos^4 theta =1-2sin^2 theta cos^2 theta $



Question: Prove that $$ \sin^4\theta +\cos^4 \theta =1-2\sin^2 \theta \cos^2 \theta $$






What I have attempted (Usually I start of with the complex side)



So starting with the LHS



$$ \sin^4\theta +\cos^4 \theta =1-2\sin^2 \theta \cos^2 \theta $$



$$ (\sin^2\theta)^2 + \cos^4 \theta =1-2\sin^2 \theta \cos^2 \theta $$



$$ (1-\cos^2\theta)^2 + \cos^4 \theta =1-2\sin^2 \theta \cos^2 \theta $$




$$ (1-\cos^2\theta)(1-\cos^2\theta) + \cos^4 \theta =1-2\sin^2 \theta \cos^2 \theta $$



$$ 1 - 2\cos^2\theta + \cos^4\theta + \cos^4\theta =1-2\sin^2 \theta \cos^2 \theta $$



$$ 1 - 2\cos^2\theta + 2\cos^4\theta =1-2\sin^2 \theta \cos^2 \theta $$



Now I am stuck... is my approach correct?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...