Sunday, 24 August 2014

algebra precalculus - How do i do this mathematical induction question?



My question:$5+10+20+...+5(2)^{n-1} = 5(2^n -1)$




  1. So first step i have to prove LHS = RHS when $n=1$, which is true.

  2. Then I assume the statement is true for $n=k$


  3. Since the statement is true for $n=k$ then for $n=k+1$



My workings:



$5+10+20+...+5(2)^{k-1} +5(2)^{(k+1)-1}= 5(2^{k+1} -1)$



LHS: $5(2^{k-1}) + 5(2)^k$



Then I do not know how to proceed to simplify, in general, can someone show some steps and show me how to tackle simplifying this kind of questions?



Answer



$5(2^k - 1) + 5(2^k) = 5(2^{k+1} -1)$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...