Monday, 11 August 2014

calculus - Showing that $ Pleft(limlimits_{n to infty}frac{S_n}{n} text{ exists in } mathbb Rright) = 0. $



I want to show the following:




Let $X_1, X_2,\ldots$ i.i.d. random variables on $(\Omega, \mathfrak A, P)$ with infinite expectation. Let $S_n = X_1+\ldots+X_n$. Then
$$

P\left(\lim\limits_{n \to \infty}\frac{S_n}{n} \text{ exists in } \mathbb R\right) = 0.
$$




Using the second Borel-Cantelli-Lemma, I already showed that
$$
P(|X_n| \ge n \text{ infinitely often}) = 1.
$$



Now I'd like to show that

$$
P\left(\lim\limits_{n \to \infty}\frac{S_n}{n} \text{ exists in } \mathbb R\right) \le P(|X_n| \ge n \text{ at most finitely often}). \tag{1}
$$
Here's what I did:



Suppose that there exists $\omega \in \Omega$ s.t. $X_n(\omega) \ge n$ infinitely often and $\frac{S_{n}(\omega)}{n} \to L \in \mathbb R$.



Note that
$$
\lim\limits_{n \to \infty}\frac{S_n(\omega)}{n+1} = \lim\limits_{n \to \infty}\frac{n}{n+1}\frac{S_n(\omega)}{n} = L

$$



Then
$$
\begin{align}
\underset{n\to\infty}{\lim\sup} \left| \frac{S_{n+1}(\omega)}{n+1} - L \right|
&= \underset{n\to\infty}{\lim\sup} \left| \frac{X_{n+1}(\omega)}{n+1} + \frac{S_{n}(\omega)}{n} - L \right| \\
&\ge \underset{n\to\infty}{\lim\sup} \left| \frac{X_{n+1}(\omega)}{n+1} \right| - \left| \frac{S_{n}(\omega)}{n+1} - L \right| \\
&= \underset{n\to\infty}{\lim\sup} \left| \frac{X_{n+1}(\omega)}{n+1} \right| - \underset{n\to\infty}{\lim\inf}\left| \frac{S_{n}(\omega)}{n+1} - L \right| \tag{2}\\
&= 1-0 = 1,

\end{align}
$$
which is a contradiction to $\lim\limits_{n \to \infty}\frac{S_{n}(\omega)}{n} = L$. Therefore
$$
\left\{\lim\limits_{n \to \infty}\frac{S_n}{n} \text{ exists in } \mathbb R \right\} \subset \left\{ |X_n| \ge n \text{ at most finitely often}\right\},
$$
which implies $(1)$ and therefore the claim.







Is this correct? I'm mostly unsure about equation $(2)$. Is it always true that the limsup of a difference of two positive sequences is the limsup of the first sequence minus the liminf of the second one?



Thank you for your help!


Answer



As @KaviRamaMurthy correctly pointed out, $(2)$ is incorrect. However, the proof can be fixed since for any real sequences $a_n$ and $b_n$, if $b_n$ is convergent, it holds that
$$
\underset{n\to\infty}{\lim\sup}\, (a_n + b_n) = \underset{n\to\infty}{\lim\sup}\, a_n + \lim\limits_{n\to\infty} b_n.
$$



So I can write

$$
\begin{align}
\underset{n\to\infty}{\lim\sup} \left| \frac{S_{n+1}(\omega)}{n+1} - L \right|
&= \underset{n\to\infty}{\lim\sup} \left| \frac{X_{n+1}(\omega)}{n+1} + \frac{S_{n}(\omega)}{n} - L \right| \\
&\ge \underset{n\to\infty}{\lim\sup} \left| \frac{X_{n+1}(\omega)}{n+1} \right| - \left| \frac{S_{n}(\omega)}{n+1} - L \right| \\
&= \underset{n\to\infty}{\lim\sup} \left| \frac{X_{n+1}(\omega)}{n+1} \right| - \lim\limits_{n\to\infty}\left| \frac{S_{n}(\omega)}{n+1} - L \right| \tag{2´}\\
&= 1-0 = 1,
\end{align}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...