Two methods of finding $$I=\int_{0}^{\pi/2} \frac{dx}{1+\sin x}$$
Method $1.$ I used substitution, $\tan \left(\frac{x}{2}\right)=t$ we get
$$I=2\int_{0}^{1}\frac{dt}{(t+1)^2}=\left. \frac{-2}{t+1}\right|_{0}^{1} =1$$
Method $2.$ we have $$I=\int_0^{\pi/2}\frac{1-\sin x}{\cos ^2 x} \,\mathrm dx = \left. \int_0^{\pi/2}\left(\sec^2 x-\sec x\tan x\right)\,\mathrm dx= \tan x-\sec x\right|_0^{\pi/2}$$
What went wrong in method $2$?
No comments:
Post a Comment