Two methods of finding I=∫π/20dx1+sinx
Method 1. I used substitution, tan(x2)=t we get
I=2∫10dt(t+1)2=−2t+1|10=1
Method 2. we have I=∫π/201−sinxcos2xdx=∫π/20(sec2x−secxtanx)dx=tanx−secx|π/20
What went wrong in method 2?
How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment