Tuesday 19 August 2014

integration - How do I Evaluate the Integral $int_{-infty }^{infty } frac{1}{e^{x^2}+1} , dx$?



Like the question states, how do I evaluate the integral
$$\int_{-\infty }^{\infty } \frac{1}{e^{x^2}+1} \, dx$$
I know of no methods to evaluate this, but when I plug this into Mathematica and Wolfram Alpha, it returns
$$\int_{-\infty }^{\infty } \frac{1}{e^{x^2}+1} \, dx=\left(1-\sqrt{2}\right) \sqrt{\pi } \zeta
\left(\frac{1}{2}\right)$$
where $\zeta (x)$ is the Riemann Zeta Function.


Answer



The given integral equals

$$ 2\int_{0}^{+\infty}\frac{dx}{1+e^{x^2}} = \int_{0}^{+\infty}\frac{dz}{\sqrt{z}(1+e^{z})}=\sum_{n\geq 1}(-1)^{n+1}\int_{0}^{+\infty}\frac{e^{-nz}}{\sqrt{z}}\,dz $$
or
$$ \sqrt{\pi}\sum_{n\geq 1}\frac{(-1)^{n+1}}{\sqrt{n}} = \sqrt{\pi}\,\eta\left(\frac{1}{2}\right)=(1-\sqrt{2})\sqrt{\pi}\,\zeta\left(\frac{1}{2}\right) $$
as claimed by WA.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...