Wednesday, 13 August 2014

real analysis - Prove that $limlimits_{ntoinfty} frac{S_n - s}{S_n+s} = 0$ implies $limlimits_{n rightarrow infty} S_n = s$


Prove that if
$$ \lim\limits_{n \rightarrow \infty} \frac{S_n-s}{S_n+s} = 0$$ then $$\lim\limits_{n \rightarrow \infty} S_n = s$$





Hint: Define $t_n = \frac{S_n -s}{S_n + s}$ and solve for $S_n$



By the hint:
$$t_n = \frac{S_n -s}{S_n + s}$$
$$(S_n + s)t_n = S_n -s$$
$$S_n(t_n-1)= - s -st_n$$
$$S_n= -s \cdot \frac{1+t_n}{t_n-1}$$



$$\lim\limits_{n \rightarrow \infty} S_n= -s \cdot \frac{1+\lim\limits_{n \rightarrow \infty} t_n}{\lim\limits_{n \rightarrow \infty} t_n-1}$$




As $ \lim\limits_{n \rightarrow \infty} \frac{S_n-s}{S_n+s} = \lim\limits_{n \rightarrow \infty} t_n = 0$, it follows:



$$\lim\limits_{n \rightarrow \infty} S_n= s$$



Is my argumentation correct/appropriate?Anything needs to be added?



Much appreciated for your input.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...