Monday 11 August 2014

real analysis - Is $f(x)=frac{cos x}x$ uniformly continuous in $(0,1)$?





Show that $$f(x)=\frac{\cos x}{x}$$ is not uniformly continuous on $(0,1)$




My attempt:



Here, $\lim_{x \mapsto 0} \frac{\cos x}{x}$ does't exist, we cannot continuously extend $f$ on $[0,1]$. So $f$ is not uniformly continuous on $(0,1)$.



My interest is to show this by sequential criterion. Is my following attempt correct ?




Take
$$
x_n=\frac{1}{n} \quad \text{and} \quad y_n=\frac{1}{n+1}.
$$
Then $\vert x_n - y_n \vert \rightarrow 0$. But
$$
\vert\, f(x_n) - f(y_n) \vert = \left\vert \frac{\cos 1/n}{1/n} -\frac{\cos 1/(n+1)}{1/(n+1)}\right\vert \rightarrow1 (?)
$$



Any help?



Answer



Correct. It does tend to 1
$$
\frac{\cos\big(\frac{1}{n+1}\big)}{\frac{1}{n+1}}-\frac{\cos\big(\frac{1}{n+1}\big)}{\frac{1}{n}}=(n+1)\cos\Big(\frac{1}{n+1}\Big)-n\cos\Big(\frac{1}{n}\Big) \\ =\cos\Big(\frac{1}{n+1}\Big)+n\left(\cos\Big(\frac{1}{n+1}\Big)-\cos\Big(\frac{1}{n}\Big)\right) =\cos\Big(\frac{1}{n+1}\Big)-n \left(\frac{1}{n+1}-\frac{1}{n}\right)\sin \xi_n \\=\cos\Big(\frac{1}{n+1}\Big)+\frac{\sin\xi_n}{n+1}\to 1,
$$
as $n\to \infty$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...