Monday, 11 August 2014

real analysis - Is f(x)=fraccosxx uniformly continuous in (0,1)?





Show that f(x)=cosxx is not uniformly continuous on (0,1)




My attempt:



Here, lim does't exist, we cannot continuously extend f on [0,1]. So f is not uniformly continuous on (0,1).



My interest is to show this by sequential criterion. Is my following attempt correct ?




Take
x_n=\frac{1}{n} \quad \text{and} \quad y_n=\frac{1}{n+1}.
Then \vert x_n - y_n \vert \rightarrow 0. But
\vert\, f(x_n) - f(y_n) \vert = \left\vert \frac{\cos 1/n}{1/n} -\frac{\cos 1/(n+1)}{1/(n+1)}\right\vert \rightarrow1 (?)



Any help?



Answer



Correct. It does tend to 1
\frac{\cos\big(\frac{1}{n+1}\big)}{\frac{1}{n+1}}-\frac{\cos\big(\frac{1}{n+1}\big)}{\frac{1}{n}}=(n+1)\cos\Big(\frac{1}{n+1}\Big)-n\cos\Big(\frac{1}{n}\Big) \\ =\cos\Big(\frac{1}{n+1}\Big)+n\left(\cos\Big(\frac{1}{n+1}\Big)-\cos\Big(\frac{1}{n}\Big)\right) =\cos\Big(\frac{1}{n+1}\Big)-n \left(\frac{1}{n+1}-\frac{1}{n}\right)\sin \xi_n \\=\cos\Big(\frac{1}{n+1}\Big)+\frac{\sin\xi_n}{n+1}\to 1,
as n\to \infty.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...