Tuesday, 26 August 2014

integration - Evaluate $int _0^{infty }frac{x^6}{left(x^4+a^4right)^2}dx$

The function




$$f\left(z\right)=\frac{z^6}{\left(z^4+a^4\right)^2}$$



Has the following poles of order 2:



$$ z(k)=a \exp\left( \frac{\left(2k+1\right)}4 i\pi \right)$$



$f$ is even, therefore: $$\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx =\frac{1}{2}\int _{-\infty }^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx$$



$$\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx=i\pi \sum _k\:Res\left(f,\:z\left(k\right)\right)$$




$$Res\left(f,\:z\left(k\right)\right)=\lim _{z\to z\left(k\right)}\left(\frac{1}{\left(2-1\right)!}\left(\frac{d}{dz}\right)^{2-1}\frac{z^6\left(z-z\left(k\right)\right)^2}{\left(z^4+a^4\right)^2}\right)$$



$$z^4+a^4=z^4-z_k^4\implies\dfrac{z^6(z-z_k)^2}{(z^4+a^4)^2}=\dfrac{z^6}{(z^3+z_k z^2+z_k^2 z+z_k^3)^2}$$



$$Res\left(f,\:z_k\right)=\lim _{z\to \:z_k}\left(\frac{d}{dz}\left(\frac{z^6}{\left(z^3+z_kz^2+z_k^2z+z_k^3\right)^2}\right)\right)$$



$$Res\left(f,\:z_k\right)=\frac{2z_kz^5\left(z^2+2z_kz+3z_k^2\right)}{\left(z^3+z_kz^2+z_k^2z+z_k^3\right)^3}=\frac{2z_k^6\cdot 6z_k^2}{\left(4z_k^3\right)^3}$$



$$Res\left(f,\:z_k\right)=\frac{12z_k^8}{64z_k^9}=\frac{3}{16z_k}$$




$$\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi }{16a}\sum _{k=0}^n\:e^{-\frac{\left(2k+1\right)}{4}i\pi }$$



We consider only the residues within the upper half plane, that is to say those corresponding to $k=0$ and $k=1$.



$$\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi \:}{16a}\left(e^{-\frac{i\pi }{4}\:\:}+e^{-\frac{3i\pi \:}{4}\:\:}\right)$$



$$\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi \:}{16a}\left(\frac{\sqrt{2}}{2}\:-i\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)$$



$$\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3\pi \sqrt{2}\:}{16a}$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...