The function
f(z)=z6(z4+a4)2
Has the following poles of order 2:
z(k)=aexp((2k+1)4iπ)
f is even, therefore: ∫+∞0x6(x4+a4)2dx=12∫+∞−∞x6(x4+a4)2dx
∫+∞0x6(x4+a4)2dx=iπ∑kRes(f,z(k))
Res(f,z(k))=lim
z^4+a^4=z^4-z_k^4\implies\dfrac{z^6(z-z_k)^2}{(z^4+a^4)^2}=\dfrac{z^6}{(z^3+z_k z^2+z_k^2 z+z_k^3)^2}
Res\left(f,\:z_k\right)=\lim _{z\to \:z_k}\left(\frac{d}{dz}\left(\frac{z^6}{\left(z^3+z_kz^2+z_k^2z+z_k^3\right)^2}\right)\right)
Res\left(f,\:z_k\right)=\frac{2z_kz^5\left(z^2+2z_kz+3z_k^2\right)}{\left(z^3+z_kz^2+z_k^2z+z_k^3\right)^3}=\frac{2z_k^6\cdot 6z_k^2}{\left(4z_k^3\right)^3}
Res\left(f,\:z_k\right)=\frac{12z_k^8}{64z_k^9}=\frac{3}{16z_k}
\int _0^{+\infty }\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi }{16a}\sum _{k=0}^n\:e^{-\frac{\left(2k+1\right)}{4}i\pi }
We consider only the residues within the upper half plane, that is to say those corresponding to k=0 and k=1.
\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi \:}{16a}\left(e^{-\frac{i\pi }{4}\:\:}+e^{-\frac{3i\pi \:}{4}\:\:}\right)
\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3i\pi \:}{16a}\left(\frac{\sqrt{2}}{2}\:-i\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\right)
\int _0^{+\infty \:}\frac{x^6}{\left(x^4+a^4\right)^2}dx=\frac{3\pi \sqrt{2}\:}{16a}
No comments:
Post a Comment