The question asks for the PDF of $$Y=(X_1)^2+(X_2)^2$$
Given that $X_1$ and $X_2$ are independent standard normal variables.
I found that the pdf for $(X_i)^2$ is
$$f_{X^2}(x) = \frac{1}{2\pi}e^{-x/2} x^\frac{1}{2}$$ for $x \geq 0$.
But I'm stuck on what to do next.
Friday, 22 August 2014
probability - Finding the PDF of the sum of two independent standard normal variables
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment