Wednesday, 27 August 2014

inequality - How to show without calculator that $leftlfloor, log_{10}{999^{999}}rightrfloor =leftlfloor, log_{10}{999^{999}}+log_{10}2rightrfloor$

By wolfram alpha, I get



$\left\lfloor\, \log_{10}{999^{999}}\right\rfloor =\left\lfloor\, \log_{10}{999^{999}}+\log_{10}2\right\rfloor=2996$.



How to prove that $\left\lfloor\, \log_{10}{999^{999}}\right\rfloor =\left\lfloor\, \log_{10}{999^{999}}+\log_{10}2\right\rfloor$ without calculator or wolfram alpha?




Thank in advances.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...