Friday, 29 August 2014

Elementary Number Theory: Proving log$_2$($3$) is irrational using the Fundamental Theorem of Arithmetic.

Problem: Prove $log$$_2$($3$) is irrational using the Fundamental Theorem of Arithmetic.



What I have so far:



Proof: Suppose $log$$_2$($3$) $\in$ $\mathbb Q$



Then there are $p,q$ $\in$ $\mathbb Z$ , $q$$\neq$$0$ s.t. $log$$_2$($3$)=$\frac pq$




Then $2$$^p$ $=$ $3$$^q$



This is where I get stuck because I'm not sure how to incorporate the Fundamental Theorem of Arithmetic.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...