Saturday, 23 August 2014

Proof by induction in trigonometry.





Prove that cosx+cos2x+cos3x+...+cosnx=cos(n+12x)sin(nx2)cscx2





Attempt:



Clearly, P(1) is true.



Assume P(m) is true.



Thus, P(m+1)=(cosx+cos2x+cos3x+...+cosmx)+cos((m+1)x)




=cos(m+12x)sin(mx2)cscx2+cos((m+1)x)=csc(x2)(cos(m+12x)sin(mx2)+(cos(m+1)x)sin(x2))



What do I do next?


Answer



Formula to be used:



sinAsinB=cos(A+B2)sin(AB2)



Thus,

csc(x2)(cos(m+12x)sin(mx2)+(cos(m+1)x)sin(x2))



=csc(x2)(12(sin2mx+x2sinx2)+12(sin2mx+3x2sin2mx+x2))



Now, again use the formula on the left out terms.



=csc(x2)(12(sin2mx+3x2sinx2))



=cos(m+22x)sin((m+1)x2)cscx2




Thus, P(m+1) is also true.



Q.E.D.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...