Saturday 23 August 2014

Proof by induction in trigonometry.





Prove that $\cos x +\cos 2x + \cos 3x + ...+ \cos nx =\cos \left(\dfrac{n+1}{2}x\right) \sin \left(\dfrac{nx}{2}\right)\csc \dfrac{x}{2}$





Attempt:



Clearly, $P(1)$ is true.



Assume $P(m)$ is true.



Thus, $P(m+1) = (\cos x +\cos 2x + \cos 3x + ...+ \cos mx)+ \cos((m+1)x)$




$= \cos \left(\dfrac{m+1}{2}x\right) \sin \left(\dfrac{mx}{2}\right)\csc \dfrac{x}{2} + \cos((m+1)x)
\\= \csc (\dfrac x 2)\left(\cos \left(\dfrac{m+1}{2}x\right) \sin \left(\dfrac{mx}{2}\right)+ (\cos(m+1)x)\sin (\dfrac x 2)\right)$



What do I do next?


Answer



Formula to be used:



$\sin A- \sin B = \cos\left(\dfrac{A+B}{2}\right)\sin \left(\dfrac{A-B}{2}\right)$



Thus,

$\csc \left(\dfrac x 2 \right)\left(\cos \left(\dfrac{m+1}{2}x\right) \sin \left(\dfrac{mx}{2}\right)+ (\cos(m+1)x)\sin (\dfrac x 2)\right)$



$= \csc \left(\dfrac x 2 \right)\left(\dfrac 1 2 \left(\sin \dfrac{2mx+x}{2} - \sin \dfrac x 2 \right)+ \dfrac 1 2 \left(\sin \dfrac{2mx+3x}{2} - \sin \dfrac{2mx + x}{2 } \right) \right)$



Now, again use the formula on the left out terms.



$= \csc \left(\dfrac x 2 \right)\left(\dfrac 1 2 \left(\sin \dfrac{2mx+3x}{2} - \sin \dfrac x 2 \right) \right)$



$= \cos \left(\dfrac{m+2}{2}x\right) \sin \left(\dfrac{(m+1)x}{2}\right)\csc \dfrac{x}{2} $




Thus, $P(m+1)$ is also true.



Q.E.D.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...