Prove that cosx+cos2x+cos3x+...+cosnx=cos(n+12x)sin(nx2)cscx2
Attempt:
Clearly, P(1) is true.
Assume P(m) is true.
Thus, P(m+1)=(cosx+cos2x+cos3x+...+cosmx)+cos((m+1)x)
=cos(m+12x)sin(mx2)cscx2+cos((m+1)x)=csc(x2)(cos(m+12x)sin(mx2)+(cos(m+1)x)sin(x2))
What do I do next?
Answer
Formula to be used:
sinA−sinB=cos(A+B2)sin(A−B2)
Thus,
csc(x2)(cos(m+12x)sin(mx2)+(cos(m+1)x)sin(x2))
=csc(x2)(12(sin2mx+x2−sinx2)+12(sin2mx+3x2−sin2mx+x2))
Now, again use the formula on the left out terms.
=csc(x2)(12(sin2mx+3x2−sinx2))
=cos(m+22x)sin((m+1)x2)cscx2
Thus, P(m+1) is also true.
Q.E.D.
No comments:
Post a Comment