Tuesday, 5 July 2016

calculus - Definition of locally integrable function

I was given two definitions:





  1. Let the function $f(x)$ be defined in a interval $[a,\infty)$ we will say that $f$ is locally integrable in $[a,\infty)$ if for all $a


  2. Let $f$ be defined and locally integrable in $[a,\infty)$ we will define the improper integral $\int_{a}^{\infty}f(x)dx$ to be $\lim\limits_{R \to \infty} \int_{a}^{R}f(x)dx$.

    a.if the limit exist and is finite we say that $\int_{a}^{\infty}f(x)dx$ converges and $f$ is integrable in $[a,\infty)$

    b.if the limit does not exist we say that $\int_{a}^{\infty}f(x)dx$ diverges and $f$ is not integrable in $[a,\infty)$






Is the definition 2 part b correct?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...