Sunday, 10 July 2016

calculus - Evaluation of $lim_{x to 0} frac{sin(x+a) -sin(a)}{sin2x}$.



I am having trouble proving out the below:




$$\lim_{x \to 0} \frac{\sin(x+a) - \sin(a)}{\sin2x}$$





I have got as far as below using $\sin(a) + \sin(b)$ in numerator and $\sin(2a)$ in the denominator but am not sure how to expand further, or if these are the right rules to apply.



$$\lim_{x \to 0}\frac{\sin(x)\cos(a) + \sin(a)[\cos(x) - 1]}{2\sin(x)\cos(x)}$$



I need to simplify it down to apply $\displaystyle\lim_{x \to 0}\frac{\sin(x)}{x}$.


Answer



Continue with this:
$$\frac{\sin x \cos a}{2\sin x\cos x} + \frac{\sin a[\cos x - 1]}{2\sin x\cos x}$$

$$\frac{\cos a}{2\cos x} - \sin a\frac{2\sin^2\frac{x}{2}}{4\sin\frac{x}{2}\cos\frac{x}{2}\cos x}$$
$$\frac{\cos a}{2\cos x} - \sin a\frac{\sin\frac{x}{2}}{2\cos\frac{x}{2}\cos x}$$
then
$$\lim_{x\to0}\frac{\cos a}{2\cos x} - \sin a\frac{\sin\frac{x}{2}}{2\cos\frac{x}{2}\cos x}=\frac{\cos a}{2\times1}-0=\frac{\cos a}{2}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...