Sunday, 10 July 2016

calculus - How to calculate $int_0^{pi/2} sin^a x cos^b x ,mathrm{d} x$




$$\int_0^{\pi/2} \sin^a x \cos^b x \,\mathrm{d} x = \frac{\Gamma\left(\frac{1+a}{2}\right)\Gamma\left(\frac{1+b}{2}\right)}{2 \Gamma\left(1 + \frac{a + b}{2}\right)} \quad\quad\text{for } a, b > -1$$
according to Mathematica. Wikipedia also lists a recursive expression for the indefinite integral when $a, b > 0$. My question is how to derive the explicit formula given by Mathematica (preferably without using esoteric special functions, but complex analysis is fine).


Answer



Okay first of all we make the substitution $t=\sin^2x$. Thus the integral becomes
$$\frac12\int_0^1t^{\frac{a-1}2}(1-t)^{\frac{b-1}2}\mathrm dt=\frac12\int_0^1t^{\frac{a+1}2-1}(1-t)^{\frac{b+1}2-1}\mathrm dt$$
Then we recall the definition of the Beta function:
$$B(x,y)=\int_0^1t^{x-1}(1-t)^{y-1}\mathrm dt=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$
So we have our integral at
$$\frac{\Gamma(\frac{a+1}2)\Gamma(\frac{b+1}2)}{2\Gamma(\frac{a+b}2+1)}$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...