Prove that
$$ \sin x \ge \frac{x}{x+1}, \space \space\forall x \in \left[0, \frac{\pi}{2}\right]$$
Answer
Take $x \in [0, \pi/2]$. Consider the right triangle with sides $1, x$ and $\sqrt{1 + x^2}$. The angle opposite the side with length $x$ is smaller than $x$. It follows that
$$
\sin(x) \geq \frac{x}{\sqrt{x^2 + 1}} \geq \frac{x}{x + 1}.
$$
No comments:
Post a Comment