Wednesday, 6 July 2016

calculus - Proving that $sin x ge frac{x}{x+1}$




Prove that



$$ \sin x \ge \frac{x}{x+1}, \space \space\forall x \in \left[0, \frac{\pi}{2}\right]$$


Answer



Take $x \in [0, \pi/2]$. Consider the right triangle with sides $1, x$ and $\sqrt{1 + x^2}$. The angle opposite the side with length $x$ is smaller than $x$. It follows that



$$
\sin(x) \geq \frac{x}{\sqrt{x^2 + 1}} \geq \frac{x}{x + 1}.
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...