Sunday, 3 July 2016

complex numbers - $z=e^{2pi i/5}$ solves $1+z+z^2+z^3+z^4=0$




What is the best way to verify that
$$1+z+z^2+z^3+z^4=0$$
given $z=e^{2\pi i/5}$?




I tried using Euler's formula before substituting this in, but the work got messy real fast.


Answer



Clearly(?) $z^5=1$ and $z\ne 1$. Also, $$z^ 5-1=(z-1)(1+z+z^2+z^3+z^4)$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...