Friday, 8 July 2016

Improper integration involving complex analytic arguments



I am trying to evaluate the following:



$\displaystyle \int_{0}^{\infty} \frac{1}{1+x^a}dx$, where $a>1$ and $a \in \mathbb{R}$



Any help will be much appreciated.


Answer



Use the change of variables $1+x^\alpha=\frac{1}{t}$ to cast the integral in terms of the beta function




$$ \frac{1}{\alpha}\int_{0}^{1}t^{-1/\alpha}(1-t)^{1/\alpha-1}= \frac{1}{\alpha}\Gamma\left(\frac{1}{\alpha}\right)\Gamma\left(1-\frac{1}{\alpha}\right) $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...