I got this question ∫6sinxcos2x+sin2x−23sinx(cosx−1)2(5−sin2x)dx and I solved it as thus:
∫6sinxcos2x+sin2x−23sinx(cosx−1)2(5−sin2x)dx
=∫6sinxcos2x+2sinxcosx−23sinx(cosx−1)2(5−sin2x)dx
=∫sinx(6cos2x+2cosx−23)(cosx−1)2(5−(1−cos2x))dx
=∫sinx(6cos2x+2cosx−23)(cosx−1)2(4+cos2x))dx
\mathrm{put\;} \color{red}{u=\cos x}\quad \mathrm{\frac{du} {dx}}=-\sin x\quad \mathrm{dx} =\frac{\mathrm{du} } {-\sin x} \\ \require{cancel} \int \frac{\sin x(6u^2+2u-23)} {(u- 1)^2(u^2+4)}\frac{\mathrm{du}} {-\sin x} =
=\int \frac{\cancel{\sin x}(6u^2+2u-23)} {(u- 1)^2(u^2+4)}\frac{\mathrm{du}} {-\cancel{\sin x}}\\
=\int \frac{23-2u-6u^2 } {(u-1)^2(u^2+4)}\mathrm{du}
\color{red} {\mathrm{Resolving\;}} \frac{23-2u-6u^2 } {(u-1)^2(u^2+4)}\color{red} {\mathrm{\; into\; partial\; fractions\;we \;have:}} \\
\frac{4u-5} {u^2+4} - \frac{4} {u-1}+ \frac{3} {(u-1)^2} =\frac{4u} {u^2+4} - \frac{5 } {u^2+ 4} - \frac{4} {u-1}+ \frac{3} {(u-1)^2} \\
\int\ \frac{23-2u-6u^2 } {(u-1)^2(u^2+4)}=\int \left(\frac{4u} {u^2+4} - \frac{5 } {u^2+ 4} - \frac{4} {u-1}+ \frac{3} {(u-1)^2}\right) \mathrm{du}
2\ln \{u^2 +4\}-\frac{5}{2 }\tan^{-1} \left\{\frac{u}{2} \right\}-4\ln\{u-1\}-\frac{3}{u-1} \\
\mathrm{But} \;u=\cos x\\
Edit
\underline{2\ln \left|\cos^2x +4\right|-\frac{5}{2 }\tan^{-1} \left(\frac{\cos x}{2} \right) -4\ln\left|\cos x-1\right|-\frac{3}{\cos x-1}+\mathrm{C}}
Is there anything wrong with these steps?
Wolfram alpha made me extremely skeptical.
Are there alternative steps?
Answer
Mathematica gives exactly the same answer for you u-integral as
-(3/(-1 + u)) - 5/2 ArcTan[u/2] - 4 Log[-1 + u] + 2 Log[4 + u^2], u=\cos x
There is indeed no discrepancy with Mathematica and your answer. Cheer up!
No comments:
Post a Comment