Saturday, 8 June 2013

elementary number theory - How to solve $ 13x equiv 1 ~ (text{mod} ~ 17) $?




How to solve $ 13x \equiv 1 ~ (\text{mod} ~ 17) $?




Please give me some ideas. Thank you.



Answer



You use the extended Euclidean algorithm as so:



$$17 = 1 \cdot 13 + 4$$
$$13 = 3 \cdot 4 + 1$$



Therefore



$$1 = 13 - 3\cdot 4$$
$$1 = 13 - 3 \cdot (17 - 1\cdot 13)$$

$$1 = 4 \cdot 13 - 3 \cdot 17$$
$$4 \cdot 13 - 1 = 3\cdot 17$$
$$x = 4$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...