Sunday, 9 June 2013

summation - How to deduce that $1cdot 1 + 2cdot 1 + 2cdot 2 + 3cdot 1+3cdot 2+3cdot 3 +...+(ncdot n) = n(n+1)(n+2)(3n+1)/24$



I know how to reason $$1\cdot2 + 2\cdot3 + 3\cdot4 + n(n-1) = \frac{1}{3}n(n-1)(n+1)$$



However, I'm stuck on proving $$1\cdot1 + (2\cdot1 + 2\cdot2) + (3\cdot1+3\cdot2+3\cdot3) + \cdots +(n\cdot 1+...+n\cdot n) = \frac{1}{24}n(n+1)(n+2)(3n+1).$$
Could somebody shed some light on me?


Answer



You can do as the following :$$\begin{align}\sum_{k=1}^{n}k(1+2+\cdots+k)&=\sum_{k=1}^{n}k\cdot\frac{k(k+1)}{2}\\&=\frac 12\sum_{k=1}^{n}k^3+\frac 12\sum_{k=1}^{n}k^2\\&=\frac 12\left(\frac{n(n+1)}{2}\right)^2+\frac 12\cdot\frac{n(n+1)(2n+1)}{6}.\end{align}$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...