Tuesday, 4 February 2014

calculus - Does the series $sumlimits_{n=1}^{infty}frac{ln(sqrt{n})}{n}$ converge or diverge?



How to determine does this series converge or diverge? I have tried d'Alembert's ratio test but in the limit I get $1$. I suppose I should compare it with some other series, but I can't figure out with which one to compare to.



$$\sum\limits_{n=1}^{\infty}\dfrac{\ln(\sqrt{n})}{n}$$


Answer



It diverges:



$\sum\limits_{n=1}^{\infty}\dfrac{\ln(\sqrt{n})}{n} =

\sum\limits_{n=1}^{\infty}\dfrac{\ln(n^{\frac{1}{2}})}{n} =
\sum\limits_{n=1}^{\infty}\dfrac{\frac{1}{2}\ln(n)}{n} =
\frac{1}{2}\sum\limits_{n=1}^{\infty}\dfrac{\ln(n)}{n}\geq
\frac{1}{2}\sum\limits_{n=1}^{\infty}\dfrac{1}{n} =
\infty$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...