Thursday, 6 February 2014

How to find the sum of this series?





The series is $1\cdot\frac{1}{2} + 2\cdot\frac{1}{4} + 3\cdot\frac{1}{8} + \cdots$



Or in other words



$$\sum_{n=1}^{\infty}\frac{n}{2^n}$$



What kind of series is this and how to find the sum? Thanks....


Answer



Without calculus:




If
$s(a)
=\sum_{n=0}^{\infty} na^n
$
for
$|a| < 1$,
then



$\begin{array}\\
as(a)

&=\sum_{n=0}^{\infty} na^{n+1}\\
&=\sum_{n=1}^{\infty} (n-1)a^{n}\\
&=\sum_{n=1}^{\infty} na^{n}-\sum_{n=1}^{\infty} a^{n}\\
&=s(a)-\dfrac{a}{1-a}\\
\text{so}\\
s(a)
&=\dfrac{a}{(1-a)^2}\\
\end{array}
$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...