Sunday, 2 February 2014

limits without lhopital - Find $lim_{x to 0} frac{e^{2x}-1}{tan x}$

I'd like help finding



$$\lim_{x \to 0} \frac{e^{2x}-1}{\tan x}$$




without the use of L'Hôpital's rule.



So far I did this:



$$\lim_{x \to 0} \frac{e^{2x}-1}{\tan x}$$
$$=\lim_{x \to 0} \frac{\cos x(e^{2x}-1)}{\sin x}$$
$$=\lim_{x \to 0} \frac{x\cos x(e^{2x}-1)}{x\sin x}$$
$$=\lim_{x \to 0} \frac{\cos x(e^{2x}-1)}{x}$$




Basically I got nowhere. Any hints or partial solutions to help me?



By the way, the is the 1969 AP BC Multiple Choice #28.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...