Friday, 7 February 2014

ordinary differential equations - Polar coordinates complex differentiation



In Proof of Cauchy Riemann Equations in Polar Coordinates the complex differentation was given in polar coordinates as



\begin{align} \notag
f'(z) &= u_x+iv_x \\ \notag

&= (\cos(\theta)U_r - \tfrac{1}{r}\sin(\theta)U_{\theta})+i(\cos(\theta)V_r - \tfrac{1}{r}\sin(\theta)V_{\theta}) \\ \notag
&= (\cos(\theta)U_r + \sin(\theta)V_{r})+i(\cos(\theta)V_r - \sin(\theta)U_{r}) \\ \notag &= (\cos(\theta)- i\sin(\theta))U_r + i(\cos(\theta)-i\sin(\theta))V_r \\ \notag
&= e^{-i\theta}( U_r+iV_r) \notag
\end{align}



I am confused about the second line because if $x=r\cos\theta$ then



\begin{align} \notag
f'(z) &= u_x+iv_x \\ \notag
&= \left(U_r \frac{\partial r}{\partial x}+ U_{\theta}\frac{\partial \theta}{\partial x} \right)+i\left(V_r \frac{\partial r}{\partial x}+ V_{\theta}\frac{\partial \theta}{\partial x} \right)\\ \notag

&= \left(\frac{1}{\cos(\theta)}U_r -\frac{1}{r\sin(\theta)}U_{\theta}\right)+i\left(\frac{1}{\cos(\theta)}V_r -\frac{1}{r\sin(\theta)}V_{\theta}\right) \\ \notag &
\end{align}



because $1=\cos\theta\frac{\partial r}{\partial x}$ and $1=-r\sin\theta\frac{\partial r}{\partial \theta}$



So where did $(\cos(\theta)U_r - \tfrac{1}{r}\sin(\theta)U_{\theta})+i(\cos(\theta)V_r - \tfrac{1}{r}\sin(\theta)V_{\theta}) $ come from?


Answer



Note that $\frac 1{\partial_r x} \ne \partial_x r$! We have
$$ \frac{\partial r}{\partial x} = \frac 1{2\sqrt{x^2 + y^2}} \cdot 2x = \frac{x}r = \cos \theta $$
and

$$ \frac{\partial \theta}{\partial x} = \frac 1{1 + y^2x^{-2}}\cdot \frac{-y}{x^2} = -\frac{y}{r^2} = -\frac 1r \sin\theta $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...