Find this following limit
$$\displaystyle \lim_{x\to 0}\dfrac{1}{x^4}\left(\dfrac{1}{x}\left(\dfrac{1}{\tanh{x}}-\dfrac{1}{\tan{x}}\right)-\dfrac{2}{3}\right)=?$$
My try: since $$\tanh{x}=\dfrac{e^{x}-e^{-x}}{e^x+e^{-x}}$$
then
$$\dfrac{1}{\tanh{x}}-\dfrac{1}{\tan{x}}=\dfrac{e^{x}-e^{-x}}{e^x+e^{-x}}-\dfrac{1}{\tan{x}}$$
then I can't,Thank you
Answer
$$
\coth x=\frac{1}{x}+\frac{x}{3}-\frac{x^3}{45}+\frac{2x^5}{945}-\frac{x^7}{4725}+... \\
\cot x =\frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\frac{x^7}{4725}-... \\[0.9cm]
\text{Given limit is}\\ \lim_{x \to 0} \frac{1}{x^4}\left(\frac{1}{x}\left(\frac{2x}{3}+\frac{4x^5}{945} + ...\right)-\frac{2}{3}\right) \\
= \lim_{x \to 0} \frac{1}{x^4}\left(\frac{4x^4}{945} + ...\right) \\
=\frac{4}{945}
$$
Don't worry if you can't remember these power series. You can derive them in a jiffy using Bernoulli numbers. But that's for another day.
No comments:
Post a Comment