Tuesday, 1 April 2014

calculus - How find this limit $lim_{xto 0}frac{1}{x^4}left(frac{1}{x}left(frac{1}{tanh{x}}-frac{1}{tan{x}}right)-frac{2}{3}right)=?$



Find this following limit
$$\displaystyle \lim_{x\to 0}\dfrac{1}{x^4}\left(\dfrac{1}{x}\left(\dfrac{1}{\tanh{x}}-\dfrac{1}{\tan{x}}\right)-\dfrac{2}{3}\right)=?$$



My try: since $$\tanh{x}=\dfrac{e^{x}-e^{-x}}{e^x+e^{-x}}$$

then
$$\dfrac{1}{\tanh{x}}-\dfrac{1}{\tan{x}}=\dfrac{e^{x}-e^{-x}}{e^x+e^{-x}}-\dfrac{1}{\tan{x}}$$



then I can't,Thank you


Answer



$$
\coth x=\frac{1}{x}+\frac{x}{3}-\frac{x^3}{45}+\frac{2x^5}{945}-\frac{x^7}{4725}+... \\
\cot x =\frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\frac{x^7}{4725}-... \\[0.9cm]
\text{Given limit is}\\ \lim_{x \to 0} \frac{1}{x^4}\left(\frac{1}{x}\left(\frac{2x}{3}+\frac{4x^5}{945} + ...\right)-\frac{2}{3}\right) \\
= \lim_{x \to 0} \frac{1}{x^4}\left(\frac{4x^4}{945} + ...\right) \\

=\frac{4}{945}
$$



Don't worry if you can't remember these power series. You can derive them in a jiffy using Bernoulli numbers. But that's for another day.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...