Tuesday, 1 April 2014

calculus - How find this limit limxto0frac1x4left(frac1xleft(frac1tanhxfrac1tanxright)frac23right)=



Find this following limit
lim



My try: since \tanh{x}=\dfrac{e^{x}-e^{-x}}{e^x+e^{-x}}

then
\dfrac{1}{\tanh{x}}-\dfrac{1}{\tan{x}}=\dfrac{e^{x}-e^{-x}}{e^x+e^{-x}}-\dfrac{1}{\tan{x}}



then I can't,Thank you


Answer



\coth x=\frac{1}{x}+\frac{x}{3}-\frac{x^3}{45}+\frac{2x^5}{945}-\frac{x^7}{4725}+... \\ \cot x =\frac{1}{x}-\frac{x}{3}-\frac{x^3}{45}-\frac{2x^5}{945}-\frac{x^7}{4725}-... \\[0.9cm] \text{Given limit is}\\ \lim_{x \to 0} \frac{1}{x^4}\left(\frac{1}{x}\left(\frac{2x}{3}+\frac{4x^5}{945} + ...\right)-\frac{2}{3}\right) \\ = \lim_{x \to 0} \frac{1}{x^4}\left(\frac{4x^4}{945} + ...\right) \\ =\frac{4}{945}



Don't worry if you can't remember these power series. You can derive them in a jiffy using Bernoulli numbers. But that's for another day.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...