Tuesday, 5 August 2014

Calculate the limit $lim_{xto 0}frac{arcsin(2x)}{ln⁡(e-2x)-1}$ without using L'Hôpital's rule




I need to calculate the limit without using L'Hôpital's rule:



$$\lim_{x\to 0}\frac{\arcsin(2x)}{\ln⁡(e-2x)-1}$$



I know that: $$\lim_{a\to 0}\frac{\arcsin a}{a}=1$$



But, how to apply this formula?


Answer



We have, $$\lim_{x \to 0} \frac{\arcsin 2x}{\ln(e-2x)-1} = \lim_{x \to 0}\frac{\arcsin 2x}{2x} \frac{2x}{\ln(e-2x)-1} = \lim_{x \to 0}\frac{\arcsin 2x}{2x}\frac{-\frac{2x}{e}}{\ln(1+(-\frac{2x}{e}))}\times (-e)$$ This can be easily simplified to get the answer as $-e$. Hope it helps.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...