Saturday, 9 August 2014

combinatorics - Prove that $frac{100!}{50!cdot2^{50}} in Bbb{Z}$



I'm trying to prove that :



$$\frac{100!}{50!\cdot2^{50}}$$




is an integer .



For the moment I did the following :



$$\frac{100!}{50!\cdot2^{50}} = \frac{51 \cdot 52 \cdots 99 \cdot 100}{2^{50}}$$



But it still doesn't quite work out .



Hints anyone ?




Thanks


Answer



$$ \frac{(2n)!}{n! 2^{n}} = \frac{\prod\limits_{k=1}^{2n} k}{\prod\limits_{k=1}^{n} (2k)} = \prod_{k=1}^{n} (2k-1) \in \Bbb{Z}. $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...