Tuesday, 5 August 2014

elementary number theory - Induction: Prove that $5^{3n} + 7^{2n-1}$ is divisible by $4$




Prove that $5^{3n} + 7^{2n-1}$ is divisible by $4$ for all $n \in \mathbb{N}$.





  1. For $n=1$,
    $\Rightarrow 5^3 + 7^1 \Rightarrow 132 \mid 4$ (which is divisible by $4$)

  2. Let us assume given equation holds true for $n = m$,

    $\Rightarrow 5^{3m} + 7^{2m-1} | 4$

  3. Now for $n = m+1$,


    • $5^{3m+3} + 7^{2m+2-1}$

    • $5^{3m} \cdot 5^3 + 7^{2m-1} \cdot 7^2$

    • $5^{3m} \cdot 125 + 7^{2m-1} \cdot 49$





How do I go ahead from here? I am kind of stuck.


Answer



To complete your argument try to use the induction hypothesis. For example, write
$$5^{3m} \cdot 125 + 7^{2m-1} \cdot 49 = (5^{3m} + 7^{2m-1}) + 5^{3m} \cdot 124 + 7^{2m-1} \cdot 48.$$



Now $4$ divides $5^{3m} + 7^{2m-1}$ by induction hypothesis, and $4$ divides $5^{3m} 124$ as $4$ divides $124$, and $4$ divides $7^{2m-1} \cdot 48$.
Whence the sum of the three is also divisible by $4$ and you are done.



(This is basically the argument in the comments, but avoiding the modulo concept.)


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...